
Computer-Aided Molecular Binding Affinity Prediction

ESTR3108 Project Report

LIU, Zhanhao
1155092201

1 Introduction

Molecular Docking is a computational technique that aims to predict whether and how a particular small
molecule will stably bind to a target protein. It is an important component of many drug discovery
projects when the structure of the protein is available.[1]

As an alternative to modeling assumptions in scoring functions, non-parametric machine learning can be
used to implicitly capture binding effects that are hard to model explicitly. So in this project, we want
to explore some machine learning methods(Multiple Linear Regression, Random Forest, Deep Neural
Network. . .) on different tools(R, Tensorflow) introduced in the class and use these machine learning
methods to tackle the prediction problem.

In the project, we are adopting the widely-used quality criteria of PDBbind database(v2013 Benchmark).[2]

2 Performance Metrics

The prediction performance of the binding affinity was quantified through root mean square error RMSE,
standard deviation SD in linear correlation, Pearson correlation coefficient Rp, and Spearman correlation
coefficient Rs between the measured and predicted binding affinities of the test set complexes:

RMSE Root Mean Square Error

RMSE =

√√√√ 1

N

N∑
n=1

(
y(n) − p(n)

)2
SD Standard Deviation in linear correlation

SD =

√√√√ 1

N − 2

N∑
n=1

(
y(n) − p(n)

)2
Rp Pearson correlation coefficient

Rp =
N
∑N

n=1 p
nyn −

∑N
n=1 p

n
∑N

n=1 y
n√(

N
∑n

n=1 (pn)
2 −

(∑N
n=1 p

n
)2)(

N
∑N

n=1 (yn)
2 −

(∑N
n=1 y

n
)2)

1

Rs Spearman correlation coefficient

Rp =
N
∑N

n=1 p
n
r y

n
r −

∑N
n=1 p

n
r

∑N
n=1 y

n
r√(

N
∑n

n=1 (pnr)
2 −

(∑N
n=1 p

n
r

)2)(
N
∑N

n=1 (ynr)
2 −

(∑N
n=1 y

n
r

)2)

where N is the number of complexes in the set, a and b are the intercept and coefficient of the linear
correlation between {pn}Nn=1 and {yn}Nn=1 on the test set, whereas {pnr }

N
n=1 and {ynr }

N
n=1 are the rankings

of {pn}Nn=1 and {yn}Nn=1, respectively.

Therefore, lower values of RMSE and SD and higher values of Rp and Rs indicate better prediction
performance.[3]

3 Data partition

• PDBbind v2013 Benchmark

• Refined set (N=2959)

• 5-fold cross validation, Round-robin scheduling

• 1 fold for testing and 4 folds for training

Table 1: Round-robin scheduling

Partition N Lowest pKd Highest pKd
1 592 2 11.74
2 592 2 11.80
3 592 2 11.85
4 592 2 11.92
5 591 2.05 11.72

Throughout the project, I used the 5-fold cross validation for prediction and take the average of the
performance metrics as result.

4 Regression Approaches

4.1 Multiple Linear Regression

Multiple linear regression is nearly the simplest regression model in machine learning, it models the
relationship between two or more explanatory variables and a response variable by fitting a linear equation
to observed data. So in my project, I first implemented an MLR model in both R and Tensorflow to use
the four features in Cyscore as explanatory variables and the measured binding affinity as the response
variable for prediction. Here is my result:

N RMSE SD Rp Rs
1 592 1.66 1.66 0.560 0.555
2 592 1.62 1.62 0.589 0.600
3 592 1.69 1.70 0.531 0.529
4 592 1.68 1.68 0.542 0.557
5 591 1.65 1.65 0.559 0.553

avg 1.66 1.66 0.556 0.559

Table 2: MLR::Cyscore Figure 1: MLR::Cyscore(Sample 1)

2

My result is consistent with the reference result given by Dr. Hongjian Li, which means that I am on the
right track.

4.2 Random Forest

Random Forests is competitive with the best-known machine learning methods, it is an ensemble learning
method for both classification and regression. It has high accuracy and stability for classification and
regression. Since my supervisor Dr. Hongjian Li’s previous work on this project was mainly using the
Random Forests regression method for predicting the binding affinity, I first use the tool RF-Score[4],
which is designed by him to build a Random Forest model to have a try and help me get familiar with
this project.

After getting a consistent result of Dr. Hongjian Li, I used R to build a random forest model and got
the following results using the Cyscore features and Cyscore + Vina features:

Table 3: RF::Cyscore

N RMSE SD Rp Rs
1 592 1.60 1.60 0.601 0.588
2 592 1.51 1.51 0.657 0.641
3 592 1.66 1.66 0.561 0.545
4 592 1.63 1.63 0.580 0.576
5 591 1.57 1.57 0.615 0.586

avg 1.59 1.59 0.603 0.587

Table 4: RF::CyscoreVina

N RMSE SD Rp Rs
1 592 1.41 1.41 0.708 0.709
2 592 1.38 1.37 0.730 0.725
3 592 1.49 1.49 0.668 0.665
4 592 1.51 1.51 0.657 0.661
5 591 1.42 1.42 0.701 0.692

avg 1.44 1.44 0.693 0.690

(a) RF::Cyscore(sample 1) (b) RF::CyscoreVina(sample 1)

Figure 2: Comparison between RF::Cyscore and RF::CyscoreVina

We can see that Random Forest gives a better prediction performance than Multiple Linear Regression,
and using more features as explanatory variables can also improve the prediction accuracy.

Tune the RF model

mtry The mtry parameter is the number of data in each decision tree used for training in the ran-
dom forest. It is one of the most important parameters in a random forest model, so I try to tune my
RF model by finding the optimal mtry value. I started with the default value of mtry, searched for the
optimal value with respect to Out-of-Bag(OOB) error1 estimation of mtry for my RF model.

1Random forests technique involves sampling of the input data with replacement (bootstrap sampling). In this sampling,
about one-thrird of the data is not used for training and can be used to testing.These are called the out of bag samples.
Error estimated on these out of bag samples is the out of bag error.

3

Here is my result for finding the optimal mtry parameter:

mtry OOB Error mtry OOB Error
1 2.157958 6 2.131094
2 2.132698 7 2.140175
3 2.131236 8 2.128880
4 2.119785 9 2.119842
5 2.127408 10 2.135400

Table 5: Tune mtry
(CyscoreVina, improve=1e-5, ntree=500) Figure 3: MLR::Cyscore(Sample 1)

We can easily find that when mtry equals 4, the OOB Error is minimized. So I fix other parameter and
using different mtry values to repeat the prediction process using the CyscoreVina features and get the
following results:

mtry # RMSE SD Rp Rs OOB Error
2 592 1.41 1.41 0.708 0.707 2.132698
4 592 1.41 1.41 0.708 0.708 2.119785
6 592 1.41 1.41 0.708 0.708 2.131094
8 592 1.41 1.41 0.708 0.706 2.12888
10 592 1.41 1.41 0.707 0.705 2.1354
avg 1.41 1.41 0.708 0.707 2.129571

Table 6: RF models using different mtry values (ntree=500)

When mtry equals 4, the prediction performance is the best.

ntree Another important parameter in the Random Forest model is ntree. The ntree parameter is
the number of decision trees in the random forest. To tune my RF model by finding the optimal ntree
value, I fix the mtry value as 4, searched for the optimal value of ntree with respect to performance metrics.

Here is my result for finding the optimal ntree parameter:

ntree # RMSE SD Rp Rs OOB Error
30 592 1.45 1.45 0.69 0.691 2.337980
60 592 1.42 1.42 0.702 0.702 2.227404
125 592 1.42 1.42 0.703 0.703 2.205851
250 592 1.41 1.41 0.708 0.709 2.135712
500 592 1.41 1.41 0.708 0.708 2.123670
avg 1.42 1.42 0.702 0.703 2.206123

Table 7: RF models using different ntree values (mtry=4)

It can be seen that when ntree is small(30-60), increasing it can increase the RF model’s performance.
But when ntree is big enough(60-500), increasing it cannot increase the RF model’s performance very
much.

4

4.3 Support Vector Machine

Support Vector machines(SVM) is a supervised learning model with associated learning algorithms that
analyze data used for classification and regression analysis. It has the advantages of global minima and
well generalization ability. So I built an SVM model based on the package ’e1071’ of R and get the
following prediction result using the Cyscore features:

N RMSE SD Rp Rs
1 592 1.65 1.64 0.570 0.559
2 592 1.56 1.56 0.626 0.612
3 592 1.69 1.68 0.544 0.529
4 592 1.64 1.64 0.572 0.567
5 591 1.61 1.61 0.590 0.577

avg 1.63 1.63 0.580 0.569

Table 8: SVM::Cyscore Figure 4: SVM::Cyscore(sample 1)

It can be seen that the result given by SVM is slightly better than the MLR’s. However, it still cannot
beat Random Forest in all the performance metrics.

4.4 Deep Neural Network

A deep neural network (DNN) is an artificial neural network (ANN) with multiple hidden layers of units
between the input and output layers. Similar to shallow ANNs, DNNs can model complex non-linear
relationships. Since this machine learning is so widely used nowadays and it is one of the most significant
parts of this course, I built a DNN model and tried many methods to tune it for the prediction of this
project. Here are some of my results using different number of hidden layers and nodes in each layer(all
the training steps are 2000):

N RMSE SD Rp Rs
1 592 1.64 1.64 0.570 0.561
2 592 1.59 1.59 0.605 0.607
3 592 1.68 1.68 0.542 0.538
4 592 1.66 1.65 0.564 0.565
5 591 1.63 1.64 0.571 0.561

avg 1.64 1.64 0.570 0.566

Table 9: RF::Cyscore
hidden layers: [10 20 10]

N RMSE SD Rp Rs
1 592 1.65 1.65 0.567 0.560
2 592 1.59 1.59 0.609 0.611
3 592 1.68 1.68 0.541 0.537
4 592 1.66 1.66 0.557 0.561
5 591 1.63 1.63 0.574 0.563

avg 1.64 1.64 0.570 0.566

Table 10: RF::Cyscore
hidden layers: [20 40 20]

N RMSE SD Rp Rs
1 592 1.64 1.64 0.570 0.563
2 592 1.59 1.59 0.608 0.606
3 592 1.68 1.68 0.546 0.544
4 592 1.65 1.65 0.564 0.566
5 591 1.64 1.64 0.569 0.559

avg 1.64 1.64 0.571 0.568

Table 11: RF::Cyscore
hidden layers: [10 20 10 20]

N RMSE SD Rp Rs
1 592 1.64 1.64 0.571 0.563
2 592 1.59 1.59 0.604 0.607
3 592 1.68 1.68 0.545 0.538
4 592 1.66 1.65 0.563 0.563
5 591 1.63 1.63 0.573 0.562

avg 1.64 1.64 0.571 0.567

Table 12: RF::Cyscore
hidden layers: [10 20 10 20 10]

It can be seen that the result given by DNN is slightly better than MLR’s, but it is also slightly worse
than SVM’s. Also, changing the number of hidden layers and nodes in each layer cannot improve the
prediction performance very much.

5

5 Classification Approaches

Since we learn about both Classification and Regression method in the class, I want to change this
regression problem into a classification problem to see if it can give a high prediction accuracy.

5.1 2-type Classification

I first divide all the samples into two types according to their binding affinity2:

• Type 1: Pbindaff <= 6.5 (Weak binding)

• Type 2: Pbindaff > 6.5 (Strong binding)

I then use a 4 layer DNN Classifier with 10, 20, 10, 20 units in each layer respectively, to classify all the
samples and get the following accuracy(training steps = 2000):

Accuracy = 0.682432

5.2 3-type Classification

Using the similar method to divide all the samples into 3 types:

• Type 1: Pbindaff <= 5.2 (Weak binding)

• Type 2: 5.2 < Pbindaff <= 8.5 (Mild binding)

• Type 3: Pbindaff > 8.5 (Strong binding)

I then use a 4 layer DNN Classifier with 10, 20, 10, 20 units in each layer respectively, to classify all the
samples and get the following accuracy(training steps = 2000):

Accuracy = 0.616554

5.3 4-type Classification

Using the similar method to divide all the samples into 3 types:

• Type 1: Pbindaff <= 4.4 (Weak binding)

• Type 2: 4.4 < Pbindaff <= 6.9 (Mild binding)

• Type 3: 6.9 < Pbindaff <= 9.3 (Slightly strong binding)

• Type 4: Pbindaff > 9.3 (Strong binding)

I then use a 4 layer DNN Classifier with 10, 20, 10, 20 units in each layer respectively, to classify all the
samples and get the following accuracy(training steps = 2000):

Accuracy = 0.508446

To conclude, I think the accuracies of these three DNN Classification model is not so bad, but this may
not be very useful because the purpose of this project is to accurately predict the binding affinity of the
complex.

26.5 is the average of the max binding affinity(11.72) and the minimum binding affinity(2) among all the samples

6

6 Results and Conclusion

1. In the Random Forest model:

• The mtry value of smallest OOB Error is optimal.

• When ntree value is small, increasing it can increase the RF model’s performance. But when
ntree is big enough, increasing it cannot increase the RF model’s performance very much.

2. Here is the comparison between different machine learning methods performance metrics(average):

RMSE SD Rp Rs
MLR::Cyscore 1.66 1.66 0.556 0.559
RF::Cyscore 1.59 1.59 0.602 0.586

SVM::Cyscore 1.63 1.63 0.580 0.569
DNN::Cyscore ([10 20 10]) 1.64 1.64 0.570 0.566
DNN::Cyscore ([20 40 20]) 1.64 1.64 0.570 0.566

DNN::Cyscore ([10 20 10 20]) 1.64 1.64 0.571 0.568
DNN::Cyscore ([10 20 10 20 10]) 1.64 1.64 0.571 0.567

Table 13: Comparision of the performance metrics between different machine learning methods

It is not hard to find out that Random Forest regression model gives the best prediction performance
within all these machine learning methods, and Multiple Linear Regression’s performance is the
worst.

3. Classification model can give a preferable result of prediction accuracy, but this may not be very
helpful in this problem since the purpose of this project is to accurately predict the binding affinity
of the protein-ligand complex.

7 Further Prospects

• Using the high-performance computer to train the DNN Regression model for more layers and more
nodes in each layer for more training steps may improve the prediction performance.

• Using other machine learning classification models, such as Random Forest and Naive Bayes, may
improve the prediction accuracy of classifying the samples with different binding affinity.

• The data Dr. Hongjian Li used in his past research was derived by the Cyscore v1.1.4, and now
the author of Cyscore publishes the Cyscore v2.0.0 and improves the hydrophobic free energy
calculation. If we can derive a new set of features of the PDBbind v2015 refined set, we may have
a chance to improve the prediction performance.

References

[1] P. Ballester and J. Mitchell, ”A machine learning approach to predicting protein-ligand binding affinity
with applications to molecular docking”, Bioinformatics, vol. 26, no. 9, pp. 1169-1175, 2010.

[2] PDBbind database, ”PDBbind database”, pdbbind.org.cn, 2016. [Online]. Available:
http://www.pdbbind.org.cn. [Accessed: 29- Nov- 2016].

[3] H. Li, K. Leung, M. Wong and P. Ballester, ”Low-Quality Structural and Interaction Data Improves
Binding Affinity Prediction via Random Forest”, Molecules, vol. 20, no. 6, pp. 10947-10962, 2015.

[4] H. Li, ”RF-Score”, GitHub, 2016. [Online]. Available: https://github.com/HongjianLi/RF-Score.
[Accessed: 30- Nov- 2016].

7

