
Web-Scale k-means++ Clustering on PowerPS
Zhanhao (Jasper) Liu

The Chinese University of Hong Kong
zhliu6@cse.cuhk.edu.hk

ABSTRACT
PowerPS is a general and scalable Parameter Server1 based system
for distributed machine learning. PowerPS provides more flexible
control over computing resources with a novel multi-stage design
than existing systems. In this research, we developed an efficient,
scalable and distributed implementation of k-means++ Clustering
algorithm on PowerPS.

KEYWORDS
Large Scale Machine Learning, Parameter Server, Distributed Sys-
tem, Distributed Optimization

1 INTRODUCTION
The scale of machine learning problems today is increasing in terms
of both data volume and model dimensionality, and distributed
methods have been widely employed for large scale machine learn-
ing. The Parameter Server (PS) framework has been widely adopted
in existing machine learning systems to scale distributed machine
learning nowadays.[5] To address the serious problems in the de-
sign and implementation of existing PS-based systems, which have
limited the flexibility and generality of the PS abstraction, Husky
team2 develop a new design of the PS architecture and present a
new system called PowerPS. PowerPS provides more flexible control
over computing resources with a novel multi-stage design.

k-means algorithm is a most popular clustering method and
was identified as one of the top 10 algorithms in data mining.[8]
However, the traditional k-means algorithm encounters certain
performance bottlenecks when it comes to the huge data and model
size. We present 3 improvements to the popular k-means clustering
algorithm to address the extreme requirements for latency, scalabil-
ity, and sparsity encountered in user-facing web applications using
PowerPS. First, we use Scalable k-means++[2], a parallel version
of the k-means++ initialization algorithm and empirically demon-
strate its practical effectiveness, to initialize the centers of clusters
rather than choosing randomly from the dataset. Second, we adopt
the use of mini-batch optimization fork-means clustering. This re-
duces computation cost by orders of magnitude compared to the
classic batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. [7] Last, by making use of
the novel multi-stage design of PowerPS, we divided the training
task of the k-means algorithm into stages, so that the task can be
assigned to run in different locations with different amounts of
computing recourses in different stages to maximize the use of
cluster resources.

1A framework in which both data and workloads are distributed over worker nodes,
while the server nodes maintain globally shared parameters, represented as dense or
sparse vectors and matrices.
2http://www.husky-project.com/

c

TaskScheduler

FileAssigner

c KVStore

DataStore

Task3

AsyncReader
Task1

c KVStore

DataStore

Task2

AsyncReader
Task1

c KVStore

DataStore
Task2

AsyncReader Task1

Task3

Task4

Master

Slave

Figure 1: PowerPS System Architecture

2 BACKGROUND
2.1 PowerPS
PowerPS is organized in a master-slave architecture, as shown in
1. PS separates the working units into workers and servers, where
parallel workers update models stored in the servers. Both data and
workloads are distributed over slave machines, while the server
nodes maintain globally shared parameters, represented as dense
or sparse vectors and matrices. The parameters (key-value pairs)
are stored in KV-store and support asynchronous pull/push.

The relaxed consistency of PowerPS further hides synchroniza-
tion cost and latency. PowerPS allow the algorithm designer to
balance algorithmic convergence rate and system efficiency by of-
fering three kinds of mechanisms for model sync-up, including BSP,
ASP, SSP, in a unified manner. The best trade-off depends on data,
algorithm, and hardware.

2.2 k-means Clustering

Algorithm 1 k-means++ (k) Initialization
1: C← sample a point uniformly at random from X
2: while |C | < k do

3: Sample x ∈ Xwith probability
d2 (x ,C)
ϕX (C)

4: C ← C ∪ {x}
5: end while

The traditional k-means clustering method randomly chooses K
observations from the data set and uses these as the initial means,
which is very fast and intuitive. However, this method often per-
forms poorly in terms of convergence speed, especially when all

Zhanhao (Jasper) Liu

the randomly chosen data points actually belong to the same clus-
ter. To address this problem, Arthur and Vassilvitskii proposed k-
means++[1], an approximation algorithm for the NP-hard k-means
problem.

2.2.1 k-means++. The main idea of k-means++ is to choose the
centers one by one in a controlled manner, where the current set of
chosen centers will stochastically bias the choice of the next center,
see Algorithm 1. The advantage of this approach is to avoid merging
clusters together like in k-means and to obtain an approximately
optimal results on the synthetic datasets.

However, k-means++’s inherent sequential nature limits its ap-
plicability when it comes to web-scale data: one must make k-1
passes through the data to find all the k initial centers, which may
be very time-consuming when the dataset is of great volume.

2.2.2 Scalable k-means++ (a.k.a k-means||). To reduce the num-
ber of passes needed to obtain initial centers in k-means++ algo-
rithm, Bahmani proposed a Scalable k-means++[2] algorithm to
obtain a nearly optimal solution after a logarithmic number of
passes, and then show that in practice a constant number of passes
suffices. see Algorithm 2.

Algorithm 2 Scalable k-means++ (k, l) Initialization
1: C← sample a point uniformly at random from X
2: ψ ← ϕX (C)
3: for O (logψ) do
4: C

′ ← sample each point x ∈ X independently with

5: probability px =
l · d2 (x ,C)
ϕX (C)

6: C ← C ∪ {C′}
7: end for

2.2.3 Mini-batch k-means. While the above k-means++ andk-
means|| algorithm aremostly focused on the pre-initialization phases
of k-means, Sculley proposed the use of mini-batch optimization
for post-initialization phases of k-means clustering to reduce com-
putation cost by orders of magnitude compared to the classic batch
algorithm while yielding significantly better solutions than online
stochastic gradient descent. [7] See Algorithm 3.

3 IMPLEMENTATION
3.1 Parameter

d dd ... k

K centers of dimenstion d

Figure 2: KV-store of Web-Scale k-means++ Clustering

In PowerPS framework, the parameter of a machine learning
task is stored in the KV-store shared by all workers. The KV-store
of PowerPS offers normal pull/push API to allow a task to access

Algorithm 3 Mini-batch k-Means.
1: Given: k , mini-batch size b, iterations t , data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈ M do
7: d[x] ← f (C,x) ▷ Cache the center nearest to x
8: end for
9: for x ∈ M do
10: c← d[x]
11: v[c] ← v[c] + 1
12: η ← 1

v[c]
13: c← (1 − η) c + ηx
14: end for
15: end for

the KV-store like in other parameter server system. Besides, Pow-
erPS also offers chunk-based pull/push API to support natural and
efficient parameter accessing. All these operations are asynchro-
nous and non-blocking. In our implementation of the Web-Scale
k-means++ Clustering, we use the features of each center as the
parameter of the whole algorithm. Also, in the mini-batch Algo-
rithm 3, we need to maintain a vector of size k to keep track of
the number of data in each cluster. We use one chunk to store the
features of a center and the total number of parameter is k · d + k ,
where d is the number of features in each data point. See Figure 2
for the content in the KV-store.

Algorithm 4 Web-Scale k-means++ Clustering.
1: Given: k , mini-batch size b, iterations t , dataset X , v← 0
2: Initialize each c ∈ C using Scalablek-means++ algorithm

KV-Worker r = 1, ...,m :
3: for i = 1 to t do
4: Pull initial cluster centers C and v from KV-Servers
5: M ← b examples picked randomly from X
6: for x ∈ M do
7: c← f (C,x) ▷ Cache the center nearest to x
8: v[c] ← v[c] + 1
9: η ← 1

v[c] ▷ Update learning rate

10: ∆wr
+
= −η (c − x)

11: end for
12: push ∆wi

r to KV-servers
13: end for

KV-Server:
14: Receive initial cluster centers (w0) from KV-Worker
15: for i = 1 to t do
16: Sendwi−1 to each KV-Worker
17: Receive ∆wi from KV-Worker and updatewi

18: end for

Our implementation of the Web-Scale k-means++ Clustering is
divided into three tasks: load_task (load data from HDFS), init_task

Web-Scale k-means++ Clustering on PowerPS

2 4 6 8 10

20

40

60

number of workers

tim
e
(s
)

total time
training time

Figure 3: Scalability of Web-Scale k-means++ Clustering

(initialize the k centers) and train_task (conduct mini-batch updat-
ing of the centers).

In data loading task, the task scheduler of PowerPS issue load_data()
function for each load_worker, each of the worker loads its cor-
responding part of data into its local storage. In the initialization
task, we offer 3 kinds of initialization methods, "random", " extitk-
means++" or "k-means||". In the training task, each worker gets their
own set of data from the datastore and pull the parameters from
KV-store, and conduct a mini-batch training on its data. After the
training process, each worker pushes their own set of sub-gradient
to the KV-server. KV-server update all the parameters stored in
KV-store according to the consistency model (BSP, ASP, SSP). See
Algorithm 4 for the whole structure of our Web-Scale k-means++
Clustering.

4 EXPERIMENTS
We conducted several experiments on different datasets to evaluate
the performance of Web-Scalek-means++ Clustering on PowerPS.

4.1 Scalability
The scalability of a distributed algorithm can be roughly measured
by the linear relationship between the number of workers and the
running time for the same dataset as shown in Figure . 3 4

As indicated by the figure, training time and total time both
decrease nearly proportional to the increment of the number of
workers.

4.2 Convergence speed
Another important performance index of an distributed algorithm
is its convergence speed. To evaluate the performance of our Web-
Scalek-means++ Clustering, we conducted several experiments to
use Web-Scale k-means++ Clustering on PowerPS and the k-means

3(The dataset we use in this experiment is SensIT Vehicle (combined)[4], which contains
78823 data, each has 100 features and belong to one of the 3 clusters.)
4The time is measured by executing 10000 iterations.

a9 sensIT SUSY

0

50

100

150

9.2 13.7

176.9

3.2 7.8
15.5

tim
e
(s
)

Spark
PowerPS

Figure 4: Convergence time ofk-means

clustering from Spark[9] to cluster the same datasets and evaluate
their convergence time. See Figure for the experiment results.

Comparing the performance of Web-Scalek-means++ Clustering
on PowerPS with the k-means algorithms on Spark, a conclusion
can be drawn that the former outperform Spark significantly in
terms of Convergence time. See Table 1 for some information about
the three datasets used in the above experiment.

Table 1: Dataset information

Name # of classes # of data # of features

a9[6] 2 32561 123
SenseIT 3 78823 100
SUSY[3] 10 5000000 18

5 CONCLUSION
In this project, we presented a distributed Web-Scale k-means++
clustering using parameter server and adopted the multi-stage fea-
ture of PowerPS to accelerate the computation and make the most
of the computing resources. In terms of scalability and convergence
speed, this implementation outperforms the state of art MLlib on
Spark platform.

6 ACKNOWLEDGEMENT
The author would like to express his special thanks to Tatiana Jin,
Yidi Wu, Tommy Tu, Yuzhen Huang and others in Husky Team
for their kind guidance and generous assistance. He also likes to
thank Prof. James Cheng for giving him such a great opportunity
to explore about distributed system and machine learning.

REFERENCES
[1] David Arthur and Sergei Vassilvitskii. 2007. K-means++: The Advantages of

Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
onDiscrete Algorithms (SODA ’07). Society for Industrial andAppliedMathematics,

Zhanhao (Jasper) Liu

Philadelphia, PA, USA, 1027–1035. http://dl.acm.org/citation.cfm?id=1283383.
1283494

[2] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei
Vassilvitskii. 2012. Scalable K-means++. Proc. VLDB Endow. 5, 7 (March 2012),
622–633. https://doi.org/10.14778/2180912.2180915

[3] P. Baldi, P. Sadowski, and D.Whiteson. 2014. Searching for exotic particles in high-
energy physics with deep learning. Nature Communications 5, Article 4308 (July
2014), 4308 pages. https://doi.org/10.1038/ncomms5308 arXiv:hep-ph/1402.4735

[4] Marco F. Duarte and Yu Hen Hu. 2004. Vehicle Classification in Distributed
Sensor Networks. J. Parallel Distrib. Comput. 64, 7 (July 2004), 826–838. https:
//doi.org/10.1016/j.jpdc.2004.03.020

[5] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributed Machine Learning with the Parameter Server. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation (OSDI’14).
USENIX Association, Berkeley, CA, USA, 583–598. http://dl.acm.org/citation.
cfm?id=2685048.2685095

[6] John Platt. 1998. Fast Training of Support Vector Machines Using Se-
quential Minimal Optimization, In Advances in Kernel Methods - Support
Vector Learning. https://www.microsoft.com/en-us/research/publication/
fast-training-of-support-vector-machines-using-sequential-minimal-optimization/

[7] D. Sculley. 2010. Web-scale K-means Clustering. In Proceedings of the 19th Inter-
national Conference on World Wide Web (WWW ’10). ACM, New York, NY, USA,
1177–1178. https://doi.org/10.1145/1772690.1772862

[8] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou,
Michael Steinbach, David J. Hand, and Dan Steinberg. 2008. Top 10 algorithms
in data mining. Knowledge and Information Systems 14, 1 (01 Jan 2008), 1–37.
https://doi.org/10.1007/s10115-007-0114-2

[9] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10).
USENIX Association, Berkeley, CA, USA, 10–10. http://dl.acm.org/citation.cfm?
id=1863103.1863113

http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1038/ncomms5308
http://arxiv.org/abs/hep-ph/1402.4735
https://doi.org/10.1016/j.jpdc.2004.03.020
https://doi.org/10.1016/j.jpdc.2004.03.020
http://dl.acm.org/citation.cfm?id=2685048.2685095
http://dl.acm.org/citation.cfm?id=2685048.2685095
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1007/s10115-007-0114-2
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

	Abstract
	1 Introduction
	2 Background
	2.1 PowerPS
	2.2 k-means Clustering

	3 Implementation
	3.1 Parameter

	4 Experiments
	4.1 Scalability
	4.2 Convergence speed

	5 Conclusion
	6 Acknowledgement
	References

