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Abstract—The scale of data and files is increasing dramatically
nowadays. Distributed File System (DFS) had been introduced
since the 1970s to deal with the massive data storage problem.
An ideal DFS can provide data scalability, fault tolerance,
and high concurrency through partitioning and replication of
data on many nodes. Additionally, the issues of file locality
and availability are also important. Last but not least, the
use of commodity devices is significant for cost efficiency and
practical value of a DFS. Many DFS’s have been proposed
over the years and the techniques that they used to distribute
and share files among different nodes varies, Client-Server
Architectures, Cluster-Based Distributed File System, Sym-
metric Architecture, and so on. [1] In this paper, we will
survey some representative DFSs from 1997 to 2011 in their
design principles as well as performance in terms of scalability
and fault tolerance. The systems surveyed are Frangipani [2],
Google File System [3], Panasas [4] [5], Ceph [6], and TidyFS
[7].

1. Introduction

As the rapid development of big data and cloud com-
puting area, the scale of data and files that people generates
every day is increasing exponentially. Facebook has over one
billion users and generating 30 petabytes of data every day,
Twitter has 650 million users who tweet 500 million tweets
a day, and Youtube has more than 100 hours of video being
uploading every minute. How to store these data efficiently
and reliably is becoming a hot topic in both industries as
well as academic.

The traditional approach of storage–storing file and data
in a single computer or server, no longer works in nowadays
usage scenario. On the one hand, a single server can only
store a limited amount of data, which can’t cope with the
demand of today’s big data storage scenario. On the other
hand, a stand-alone storage is a disaster when it comes to
machine failure, you may risk to lost all your valuable data.

In order to make people store the massive amount of
data efficiently (fast write), access their large file easily (fast
read), as well as having their files available even if one
computer crashes (fault tolerance), Distributed File System
(DFS) had been introduced date to 1970s. DFS provides
many advantages such as ease of data sharing, the reliability
of file storage, resources management, and accessibility,

large data storage capacity, etc. Many of today’s high-
performance computing frameworks like Hadoop and Spark,
are heavily rely on these DFSs. In this paper, we study 5
representative DFSs (Frangipani [2], Google File System
[3], Panasas [4] [5], Ceph [6], and TidyFS [7].) on their
design philosophy, scalability, fault tolerance as well as their
innovation points.

This paper is organized as follows. Section 1 describes
the usage requirements of the Distributed File System. Sec-
tion 2 is detailed analysis and comments of the five DFSs
studied. We then compare the DFSs in Section 3 and Section
4 is the take away that we learn from these representative
DFSs.

2. Background

The emergence of massive data and high performance
distributed computing technology require distributed file
system for better performance in generally four perspectives:

2.1. Reliability

The bottom-most requirement for a distributed file sys-
tem is reliability. On one hand, the system needs to ensure
that there is no error during the data read/write process
from/to the DFS. On the other hand, it needs to make sure
the data will not be lost due to all kinds of reason (node
failures, power failures, human factors) in the heterogeneous
cluster environments. Hardware failures are the norm rather
than the exception in a large-scale data center. A good
DFS should ensure that highly concurrent data access/update
(which is also a norm in a large-scale data center) will not
bring any damage to the data integrity, and be able to recover
from hardware failure quickly.

2.2. Availability

A good distributed file system should be able to maintain
a 24/7 service. During the maintenance of the server, power
down, or hardware failure, some nodes in the clusters may
be out of service. To ensure that data continues to be
available in the presence of failures, the DFS needs to use
some strategies like data redundancy and cross-rack storage
to provide the data availability.



2.3. Performance

Another important issue for a DFS is its performance.
One view to measure a DFS’s performance is by its
read/write throughput in sequential and random workloads.
As DFS normally store large file into different nodes which
are connected by the network, so the network delay needs
to be considered seriously while reading/writing large file
from/to multiple nodes.

2.4. Scalability

The scalability of a DFS can be evaluated by the in-
crease of the storage capacity and throughput when nodes
are dynamically and continuously added to the system.
A typical DFS deployed in the resource-harvesting data-
centers contains thousands of nodes, it should be able to
work in a large-scale environment without degrading its
file access performance as well as data availability. One
important problem in achieving scalability is the need for
decentralization.

3. Case Studies

In this section, we analyze and comment the five repre-
sentative DFSs that we surveyed, focusing on their design
philosophy, scalability, fault tolerance as well as their inno-
vation points.

3.1. Frangipani

Frangipani is a scalable distributed file system that with
simple design and easy administration, it is developed by
researchers from Digital Equipment Corporation. Its main
goal is to cope with the laborious file system administration
problem.
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Figure 1: Frangipani layering. Several interchangeable Frangi-
pani servers provide access to one set of files on one Petal virtual
disk.

Figure 1 illustrates the layering in the Frangipani system. Multi-
ple interchangeable Frangipani servers provide access to the same
files by running on top of a shared Petal virtual disk, coordinat-
ing their actions with locks to ensure coherence. The file system
layer can be scaled up by adding Frangipani servers. It achieves
fault tolerance by recovering automatically from server failures
and continuing to operate with the servers that survive. It provides
improved load balancing over a centralized network file server by
splitting up the file system load and shifting it to the machines that
are using the files. Petal and the lock service are also distributed
for scalability, fault tolerance, and load balancing.

Frangipani servers trust one another, the Petal servers, and the
lock service. Frangipani is designed to run well in a cluster of
workstations within a single administrative domain, although a
Frangipani file system may be exported to other domains. Thus,
Frangipani can be viewed as a cluster file system.

We have implemented Frangipani under DIGITAL Unix 4.0.
Due to Frangipani’s clean layering atop the existing Petal service,
we were able to implement a working system in only a few months.

Frangipani is targeted for environments with program develop-
ment and engineering workloads. Our tests indicate that on such
workloads, Frangipani has excellent performance and scales up to
the limits imposed by the network.

2 System Structure

Figure 2 depicts one typical assignment of functions to machines.
The machines shown at the top run user programs and the Frangi-
pani file server module; they can be diskless. Those shown at the
bottom run Petal and the distributed lock service.

The components of Frangipani do not have to be assigned to
machines in exactly the way shown in Figure 2. The Petal and
Frangipani servers need not be on separate machines; it would
make sense for every Petal machine to run Frangipani as well,
particularly in an installation where the Petal machines are not
heavily loaded. The distributed lock service is independent of the
rest of the system; we show one lock server as running on each Petal
server machine, but they could just as well run on the Frangipani
hosts or any other available machines.

2.1 Components

As shown in Figure 2, user programs access Frangipani through
the standard operating system call interface. Programs running
on different machines all see the same files, and their views are
coherent; that is, changesmade to a file or directory on one machine
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Figure 2: Frangipani structure. In one typical Frangipani con-
figuration, some machines run user programs and the Frangipani
file server module; others run Petal and the distributed lock ser-
vice. In other configurations, the same machines may play both
roles.

are immediately visible on all others. Programs get essentially the
same semantic guarantees as on a local Unix file system: changes
to file contents are staged through the local kernel buffer pool
and are not guaranteed to reach nonvolatile storage until the next
applicable fsync or sync system call, but metadata1 changes
are logged and can optionally be guaranteed non-volatile by the
time the system call returns. In a small departure from local file
system semantics, Frangipani maintains a file’s last-accessed time
only approximately, to avoid doing a metadata write for every data
read.

The Frangipani file server module on each machine runs within
the operating system kernel. It registers itself with the kernel’s file
system switch as one of the available file system implementations.
The file server module uses the kernel’s buffer pool to cache data
from recently used files. It reads and writes Petal virtual disks using
the local Petal device driver. All the file servers read and write the
same file system data structures on the shared Petal disk, but each
server keeps its own redo log of pending changes in a distinct
section of the Petal disk. The logs are kept in Petal so that when
a Frangipani server crashes, another server can access the log and
run recovery. The Frangipani servers have no need to communicate
directly with one another; they communicate only with Petal and
the lock service. This keeps server addition, deletion, and recovery
simple.

The Petal device driver hides the distributed nature of Petal,
making Petal look like an ordinary local disk to higher layers of
the operating system. The driver is responsible for contacting the

1We define metadata as any on-disk data structure other than the contents of an
ordinary file.

Figure 1. The layering of Frangipani [2]

3.1.1. System design. Base on the distributed shared virtual
disk Petal [8], Frangipani adopts a novel two-layer structure.
The lower layer is Petal, which provides an automatically
managed virtual disks that can be accessed globally. In the

upper layer, multiple nodes run the same file system code on
top of Petal, which provides names, directories, and files. [2]
In Frangipani, each client is also a server for the whole file
system, participates in the management of the file system,
and can access the Petal virtual disk equally and achieve
synchronous access control via distributed lock service.

3.1.2. Scalability. The two-layer structure of Frangipani
brings great scalability. In the file system layer, one can add
storage devices dynamically without stopping the current
operation or changing any machines’ configuration. In the
bottom layer, the Petal virtual disk separates the storage into
block-level storage as well as the file system to achieve high
scalability. In addition, the lock service of the system is also
fully distributed for scalability concern.

3.1.3. Fault tolerance. Frangipani uses write-ahead redo
logging of metadata and Lease [9] mechanism of the dis-
tributed lock service to achieve fault tolerance. By write-
ahead logging, it means that when the le server of Frangipani
want to update the metadata, it will first create a record
describing the update and then appends it to the logging
file. These log records are periodically written to Petal and
can be used to recover file from failure. Also, the distributed
lock service deals with client failures with Lease. A client
first will obtain a lease and needs to renew it before some
expiration time, otherwise, the server will consider it as a
failure.

With this guarantee, Frangipani can automatically re-
cover from server failures and continue to interact with the
survived servers.

3.1.4. Potential issues.

• Redundant logging: Both the Petal virtual disk (bot-
tom layer) and the Frangipani file system (upper
layer) have their own logging, some of the may be
redundant.

• Whole-file locking: Frangipani lock the entire files
and directories rather than individual blocks when
a writer wants to modify a file, this may introduce
many lock revocation requests when there are many
writers request to access the same file.

3.2. Google File System

To meet the rapidly growing data processing demands,
Google introduced the Google File System (GFS) [3] in
2003. Inspired by Google File System, the open source
Hadoop Distributed File System (HDFS) [10] is now the
most commonly used DFS in industry.

3.2.1. Assumption. Apart from the normal goals (reliability,
availability, good performance, and scalability) of DFSs,
GFS is specially optimized for Googles core data storage
and usage needs. The design of the GFS is guided by the
following six assumptions:



• The system is built on many inexpensive commodity
components that often fail.

• The system stores a modest number of large files.
• The workloads primarily consist of two kinds of

reads: large streaming reads & small random reads.
• The workloads also have many large, sequential

writes that append data to files.
• The system must eciently implement well-dened se-

mantics for multiple clients that concurrently append
to the same le.

• High sustained bandwidth is more important than
low latency.

3.2.2. System design. The GFS is organized into clusters
of nodes. Each GFS cluster consists of a single master,
multiple chunkservers and accessed by multiple clients. The
master node maintains all metadata of the le system, controls
system-wide activities, and periodically communicates with
chunkservers in heartbeat. Each file in GFS is divided
into xed-size chunks (by default 64MB), with each chunk
replicated (by default 3 replicas) and distributed over the
chunkservers to increase the reliability of the system. Each
chunk is assigned an immutable and globally unique 64
bit chunk handle for identification by the master during
creation.

3.2.3. Scalability. There are over 1.5 billion websites on
the world wide web now and Google handles 3.5 billion
searches per day, thus Google File System needs to be
scalable and available all the time. With the single master,
multiple chunkservers architectures, the GFS can be easily
expanded by adding more chunkservers into the clusters
without significantly modifying the master server. Also, the
master of GFS only tells the client which chunkserver that
it needs to contact and does not involve in the read/write
processes. This design can protect the master from being a
bottleneck when the data and users increase.

3.2.4. Fault tolerance. Since each cluster in Google may
have thousands of disks on hundreds of nodes, component
failures are the norm rather than the exception in this
scenario. To maintain a high availability as well as data
integrity, GFS uses multiple techniques to deal with the
failures:

• Chunk Replication: Each chunk of GFS in replicated
on multiple chunkserves on different racks. Also,
techniques parity or erasure codes are also applied
to support the read-only storage requirements.

• Master Replication: As we state in Section 3.2.2,
each GFS cluster has only one master. Thus, the
master state of a cluster is replicated across multi-
ple machines via operation log and checkpoints for
reliability.

• Checksumming: The chunkserver of GFS uses
checksumming to detect data corruption. When cor-
ruption detected, the master will create a new un-
corrupted replica to replace the corrupted one.

3.2.5. Flaws.
• Small files may become hotspots: When a small file

(single-chunk) is accessed by multiple clients simul-
taneously, it will become a hotspot and overload the
chunkserver.

• Single point of Failure: Each GFS has only one
master, if it fails, it takes time to recover from master
replication and the file system may go down during
the recovery time.

3.3. Panasas

The Panasas Parallel File System [4] [5] is the earliest
object-based file systems in the industry. It’s first developed
in the PDL Lab of CMU and then turns into the Panasas
Inc. focused on the high-performance data storage solutions
area. The peculiarity of the Panasas system is its use of per-
file, client-driven RAID, which can increase the system’s
security.

3.3.1. System design. The heart of the Panasas Storage
Cluster is a decoupling of the datapath (i.e., read, write)
from the control path (i.e., metadata), allowing the clients
to directly communicate with each other. The main storage
devices of Panasas are network-attached Object Storage
Clusters (OSDs). Clients communicate with the OSDs di-
rectly to access the file data. Last, to achieve data redun-
dancy and increase system’s I/O throughput, the Panasas
storage system strips the data of a file system across multiple
objects.

3.3.2. Scalability. Traditional clustered NFS systems have
limited scalability because they use a single access point to
deal with clients’ requests for accessing data. The Panasas
storage system resolve this bottleneck by separating the
computationally expensive metadata management from the
bandwidth intensive datapath. Also, Panasas achieve a scal-
able bandwidth by striping data across multiple OSDs.

3.4. Ceph

Ceph [6] is an open source distributed file system de-
signed to support object-based storage on a single distributed
computer cluster, with excellent performance, reliability, and
scalability.

3.4.1. System design. The Ceph file system can be gener-
ally divided into three components: client, Metadata Server
(MDS), and the Object Storage Cluster (OSD). The client
exposes a near-POSIX file system interface to a host or
process and performs file I/O by communicating directly
with OSDs, which store all the file and metadata of the
file system. MDSs manage the namespace (file names and
directories) and interact with the clients to perform metadata
operations (open, rename). On the bottom layer of Ceph,
it uses Reliable Autonomic Distributed Object StorageRA-
DOSto achieve linear scaling by objects replications, cluster
expansion, failure detection and recovery to OSDs.



TABLE 1. COMPARISION OF THE FIVE DFSS

Frangipani GFS Panasas Ceph TidyFS
Architecture Two-layer Object-based Object-based Decentralized Blob Store
Naming Central metadata server Central metadata server Central metadata server Distributed metadata Central metadata server
Fault Tolerance Redo logging, Leases Heartbeat, Replication Cache Heartbeat, Monitor Replication

3.4.2. Scalability. Ceph considers scalability from multiple
dimensions, such as storage capacity, system throughput,
and read/write performance. Like Panasas, Ceph decouples
the data path and metadata management module. Traditional
storage system maintains a centralized storage gateway (like
the master is GFS) to act as a single point of contact
for requests from clients. This single point of contact may
impose a limit on system’s scalability and introduce a single
point of failure. Ceph finds its own way to use an algorithm
called CRUSH [11] to efficiently compute information about
object location, instead of keeping distribute object lists in
its metadata cluster to highly improve its scalability.

3.4.3. Fault Tolerance. For fault tolerance, Ceph uses simi-
lar approaches like GFS, OSDs exchange heartbeats period-
ically to detected node failures. Additionally, Ceph supports
a cluster of monitors to collect failure reports centrally.

3.4.4. Flaws.

• Strong consistency control bad for large cluster:
RADOS use a strong consistency control (read-one
write-all), this is good for a small file system that
with much more read requests than write. However,
in the case of a large cluster of nodes, this con-
sistency control may greatly hurt the write perfor-
mance.

3.5. TidyFS

TidyFS [7] is a simple and small distributed le system
that provides the necessary abstractions for recent years’
data-intensive parallel computations on clusters.

3.5.1. System design. There are mainly three components
of the TidyFS storage system: the Metadata server, Node
Service, and TidyFS Explorer. Like in GFS and HDFS,
TidyFS use a central Metadata Server to store the mapping
of streams to parts, machine state, mapping of parts to stor-
age machine and data path, etc. On each storage machine, a
node service is run on it to provide housekeeping services
like garbage collection, replication, and validation. As for
the TidyFS Explorer, it’s a graphical user interface for the
distributed le system, which allows the users to monitor the
state of the system as well as interact with it.

3.5.2. Fault Tolerance. TidyFS developed its own tool
called Watchdog to detect error conditions (such as repli-
cation failure) and alert conditions and then report to the
administrator for manual correction. Just like GFS and
HDFS, TidyFS replicate its data parts on multiple nodes

to support fault-tolerance. When failures happen, the fault-
tolerance module will re-execute the failed or slow processes
elsewhere.

3.5.3. Issues with native interfaces. Differ from GFS and
HDFS, TidyFS allow clients to access its file via native
interfaces (e.g., NTFS or SQL Server). By doing this, it
can allow the applications to use the most suitable parts
access patterns to perform I/O. Also, this can avoid extra
indirection layer between the client and the file system,
which can maximize the clients’ I/O performance. However,
this design also brings some issues.

• Lack of automatic eager replication: To support
the native interface access, TidyFS does not allow
automatic eager replication except for optional eager
replication in the data ingress case. The authors are
happy with the tradeoff because their use cases are
small file system deployment, so it’s not common to
have data lost before replication has completed.

• Lack of control over part sizes: Lack of control over
data part size may result in some parts much larger
than other ones. This can cause problems with the
simple replication policy of TidyFS. Sometimes a
defragmentation is needed.

4. Analysis

As the size of file and usage scenario evolves, the design
of DFS evolves to accommodate these changes too. In the
five DFSs that we surveyed, the oldest one is Frangipani that
based on the distributed shared virtual disk Petal and a novel
two-layer structure. Thought the Frangipani system may not
be able to serve for today’s big-data storage requirement,
but some of its design philosophy, such as decentralization,
failure recovery, distributed lock, have a great impact on
subsequent DFS’s design. (such as GFS)

As for the GFS, it shows us how the ”biggest data
center” in the world deal with data storage. In the trade-
off between strong consistency and high performance, GFS
choose higher throughput performance. The open-source
project HDFS that strongly influenced by GFS, is still the
most used distributed file system nowadays.

Panasas and Ceph are both parallel file system on top of
object-based storage. The concept of decoupling of storage
control from datapath operations in this two systems enables
them to achieve a high scalability without a single access
point.

To accommodate the prototypical workloads (high-
throughput, write-once, sequential I/O) of today’s parallel
computing frameworks, TidyFS is developed by Microsoft



for their community needs. Differ from other similar systems
like GFS and HDFS, TidyFS is much simpler and allow
clients to access the stored data using native interfaces.

5. Conclusion

Distributed file system has become a widely-used form
of shared permanent storage by supercomputers, clusters,
and data-centers. As the data dimension and computation
power increase day by day, people need DFSs with high
performance, scalability, reliability, and availability, to store
the large amount of data. Besides performance, the cost of
per unit storage, use of commodity devices to build the
system, and the ability to handle specific kind of workload
(like TidyFS is specially designed for parallel computing
workload) are becoming hot topics in the area of DFS.
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