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Abstract

FlexPS[1] is a general and scalable Parameter Server based system for distributed machine
learning. FlexPS provides a novel multi-stage abstraction to support flexible parallelism con-
trol, which breaks down a machine learning task into different stages so that task can run in
different locations with different amounts of computing resources. Furthermore, we proposed
a new barrier synchronization model on FlexPS, called Sparse SSP, optimized for dealing
with sparse datasets based on the Stale Synchronous Parallel (SSP) model[2]. We demon-
strate how such a design in light of dynamic parallelism as well as loose synchronization
control, achieves significant speedups and resource saving compared with well-known imple-
mentations of several ML programs on the state-of-the-art PS systems such as Petuum[3]
and Multiverso[4].

Keywords: Parameter Server, Distributed System, Large Scale Machine Learning

1. Introduction

Machine learning (ML) has been widely applied in the industry today to make sense of
the massive data available in this big data era. The scale of machine learning problems
today is increasing in terms of both data volume and model dimensionality, and distributed
methods have been widely employed for large-scale machine learning problems.

1.1. Iterative Convergent Algorithm

There are many machine learning algorithms, one major subset of them is the iterative
convergent algorithms, which begin with a guess of model parameters and proceed through
multiple iterations over the input data to optimize the solution iteratively. Such algorithms
typically have an objective function to qualify the quality of the current model, and in each
iteration consider each input datum individually to refine the current model parameters
towards the optimal value of the objective function. Examples of iterative Convergent Al-
gorithms include Stochastic Gradient Descent (SGD), Stochastic Average Gradient (SAG),
stochastic variance reduced gradient (SVRG), Stochastic Coordinate Descent (SCD), Alter-
nating Least Squares (ALS). Also, the corresponding machine learning models that these
algorithms applied are Logistic Regression, k-means clustering, linear Support Vector Ma-
chines (SVMs), neural network, matrix factorization and so on.
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1.2. Parameter Server

While the nature of the iterative convergent algorithm requires frequent access of the
parameters, this may bring lots of network bandwidth in the distributed implementation
of such kind of algorithm. Also, the training process of the iterative convergent algorithm
is sequential, thus the synchronization between different workers is hard to scale. Li et al.
proposed parameter server to solve the above problems in 2014.[9] Distributing the data and
workloads over worker nodes while maintain globally shared parameters in server nodes, the
parameter server framework is specialized to the nature of data parallel iterative machine
learning problems.

2. Background

2.1. Related works

Since its introduction, the parameter server framework has been widely adopted in ex-
isting machine learning systems to scale distributed machine learning in both academia and
industry.

ps-lite. ps-lite[5] is a light and efficient implementation of the parameter server framework
that introduces a number of optimizations for efficiency and scalability. It provides an asyn-
chronous and zero-copy key-value pair communications between worker and server nodes.
Also, it supports server-side programming, which allows the user to define server-side han-
dling functions.

Bösen. Bösen[6] is a communication-efficient parameter server and a module in Petuum[3]
developed by SAILING Lab from CMU. It presents a data-parallel concept and adopts
the Stale Synchronous Parallel (SSP) protocol, which can efficiently reduce the network
synchronization costs while maintaining a bounded convergence guarantees. Also, Bösen
introduce a table-like client API, which is natural and efficient for parameter access.

Multiverso. Multiverso[4] is a parameter server-based framework which is a core module of
the Distributed Machine Learning Toolkit (DMTK) [7] from Microsoft. Multiverso abstracts
the distributed model storage and operation, inter-process and inter-thread communication,
multi-threading management, provides a series of friendly programming interfaces for the
user to train machine learning models on big data with numbers of machines. Some popular
deep learning frameworks like theano[8] and torch[9] are also supported in Multiverso.

However, there are some common limitations in these existing parameter server frame-
works:

1. Inflexible parallelism control: Existing PS implementations do not provide flex-
ible control over parallelism; however, we have found that various machine learning
algorithms, from traditional stochastic algorithms to newly invented fast convergent
methods, have large improvement space with fine-grained parallelism control.
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2. Limited generality: Even though the PS abstraction is general enough to cap-
ture various single-machine computational frameworks including the sequential (Seq)
framework (using only 1 worker), lock-free framework (disabling consistency control),
and single-process multiple-thread (SPMT ) framework (placing all workers in the same
machine), there is a lack of specialized optimization for these frameworks.

3. Lacking support for multi-tasking and resource sharing: Existing PS imple-
mentations are primarily designed to run a single algorithm or train a single model,
thus missing new opportunities brought by multi-tasking and resource sharing.

2.2. Sparse Data

The data dimensionality is growing larger and larger nowadays, which may not be able
to reside in the main memory of a machine for statistic analysis. In most cases of the
high dimension dataset, the data is actually sparse (with many records are missing). To
save memory and reduce computation cost, people tend to only store the non-zero entries
which maintaining the key-value pairs of parameters in the storage system. As a result,
sparse machine learning problem has recently emerged as a powerful tool to obtain models
of high-dimensional parameters with a lower computational cost.
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Figure 1: FlexPS System Architecture

3. System Architecture

3.1. Overview

Flexps follows the typical master-slave model in the distributed system area, as shown
in Figure 1. In master process, there are TaskScheduler and FileAssigner. TaskScheduler
distributes workloads to slave machines according to user-defined scheduling and slave avail-
ability, as well as tracking their progress. While the FileAssigner assigns data blocks to
slaves when their corresponding tasks need to load data from the HDFS.
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Each slave machine runs an event loop to poll events from the master. When a new
task comes, it generates new threads to run the corresponding user-defined task. The slave
machine also monitors its own tasks’ process and notify the master once task finishes. The
slave also have AsyncReader and a DataStore modules which control data loading and data
storing. All the slave machines together maintain a shared global KV-store (maybe on one
machine or on multiple servers) for parameter storing and accessing.

There are two kinds of workers in the slave machine, ml-worker as well as kv-worker.
While ml-worker is in charge of the computation of the user-defined tasks, the kv-worker
issues non-blocking get() and put() functions to communicate with the parameter server.
We implement the worker as a thread but not process, so as to let the workers in the same
process can share same loaded data in the Datastore of a process. Also, we implement a
process cache strategy to maintain a most recently used parameter pool in each process to
avoid workers repetitively put/get the model parameters.

Figure 2: A typical work-flow of FlexPS

3.2. Workflow

The whole Flexps system can be generally divided into 4 modules, the server module,
worker module, communication module (mailbox ) and a driver module (user-defined machine
learning tasks and scheduling, we call it engine in Flexps). A typical work-flow of a complete
machine learning task in Flexps is as Figure 2.

1. User submits their tasks to the Engine (driver), then Engine will run the tasks and al-
locate the corresponding resources. The KVClientTable will register a CallbackRunner
to handle the subsequent requests. After extracting the needed parameter for current
iteration from the data, the user thread would push a request to the sender thread of
the mailbox to ask for the corresponding parameters.
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2. The sender thread process the request in a FIFO manner, using an IDMapper to find
out the actual receiver’s address in the cluster.

3. Mailbox send the get/add requests to the server to retrieve/update the corresponding
parameters.

4. The server handles the requests and push replies to the sender thread of the mailbox.

5. Mailbox handles the replies and pushes replies to the worker thread, and worker thread
invokes the callback runner to continue the user thread’s tasks.

3.3. Task Scheduler

TaskScheduler decides which tasks to run according to task scheduling algorithms, which
will consider task specications as well as task assignment history for scheduling. Task speci-
cation is provided by users to specify how much computing resource one stage of a task
needs and where the computing resource should be allocated. Task assignment history is
kept by TaskScheduler and can be useful to guide task scheduling.

A task scheduling algorithm needs to implement the thread nish and assign task call-
back functions. To notify TaskScheduler, thread nish will be called when a task nishes.
TaskScheduler calls assign tasks to apply the scheduling algorithm to assign new tasks to
slaves when one of the following two conditions is satised: (1) the number of available threads
exceeds a threshold; or (2) the time since the last scheduling exceeds a threshold. The two
thresholds are user-congurable.

FlexPS provides three built-in task scheduling algorithms: (1) sequential scheduling,
(2) greedy scheduling, and (3) prioritized scheduling. Sequential scheduling, which serves
as a baseline, assigns tasks to slaves one by one. Greedy scheduling tries to assign as
many tasks as possible to slaves. Once the assign task function is called, greedy scheduling
iterates through the pending tasks list and assign tasks to slaves in a greedy manner if their
requirements are satised. Note that the optimal task scheduling algorithm can be obtained
by modeling the problem as a Multiple Knapsack Problem[10]. But we do not consider the
optimal algorithm since greedy scheduling works well in practice. In fact, even the optimal
algorithm does not consider task waiting time, and may potentially starve tasks that require
a lot of resources since they are much harder to be scheduled. Prioritized scheduling xes
this problem by increasing the priority of tasks as task waiting time increases. When a
task’s priority exceeds a preset bound, it will be put into a starvation list. Each time when
assign task is called, tasks in the starvation list will be considered rst and lock the required
resources to prevent starvation. Advanced users can also customize their own task scheduling
algorithms by implementing thread nish and assign tasks.

3.4. Data Loader

FlexPS supports reading les from Distributed File System (DFS). In a common DFS,
e.g., HDFS, a le is split into one or more blocks and these blocks may have several replicas
and are stored in multiple nodes. FileAssigner in the master keeps all the block information
of each le, and all the loading threads ask FileAssigner for data blocks. FileAssigner assigns
blocks to threads according to locality, such that local blocks will be read before remote
blocks (in order to avoid reading a remote replica) for every loading thread.
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FlexPS provides two ways for data loading. The rst way is to submit a specic loading
task to the system and load the data before training tasks, i.e., we separate data loading and
model training. We provide DataStore to store the loaded data in memory. Each thread is
associated with a bucket in DataStore and it writes to its own bucket during loading and
can access other chunks when training.

On the off chance that the dataset is vast, it needs quite a while to load the entire
dataset. In this way, the second way that FlexPS used to load data from DFS is to load
data on-the-y while preparing the model, which is finished by the AsyncReader module
with a typical producer-consumer paradigm. Specifically, we use a reader thread to load
data from DFS and then store the loaded data into a buffer. Then, we use several consumer
threads to consume the data from the buffer and use them to train the model. This design
overlaps the computation and network communication time perfectly.

3.5. Programming Model

FlexPS adopts a unified KV-Store API, shown below, the same way as other existing PS
frameworks.

• Get(keys)

• Add(keys, vals)

• GetChunks(keys, vals)

• AddChunks(keys, vals)

All the Add and Get operations are non-blocking, which allows the worker thread to
issue asynchronous Add and Get requests. We also provide the chunk-based API for more
natural and efficient parameter accessing in some machine learning algorithms. Here we use
the Logistic Regression example to illustrate how to use FlexPS to implement a machine
learning task.

4. Multi-stage Design

Most existing PS frameworks keep a constant parallelism degree in the whole execution
procedure of a training task and don’t bolster changing the parallelism degree at runtime.
This limit the performance of some machine learning applications since a large class of
machine learning models have dynamic workloads in different stages of execution.

To resolve the limitation of current PS systems, FlexPS provides a flexible control over
parallelism with a novel multi-stage design, which breaks down a machine learning task
into different stages so that task can be assigned to run in different locations with different
amounts of computing resources in different stages. Under the multi-stage design, a machine
learning task is the composition of several stages. Each stage runs a user-defined function
on particular computation resources with a different number of slaves and corresponding
locations. (e.g., 10 slaves on node 1 and 5 slaves on node2). The traditional PS framework
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(a) one stage (b) multi-stage

Figure 3: Workflow comparison

can be seen as a special case of the multi-stage PS in which a task has only one stage. The
comparisons of a machine learning task execution work-flow in traditional PS system and
multi-stage PS system is shown in Figure 3.

Beside the flexible parallelism control, the multi-stage design additionally brings another
two advantages. First, it can facilitate data locality. Imaging if different stages of a machine
learning tasks are training using different parts of the dataset, we can assign the task of each
stage to the nodes containing the required data. Second, it supports fine-grained scheduling
of multiple tasks, as we can run several stages of different training tasks in the cluster at
the same time.

4.1. Direct Model Transfer

To avoid the overhead of loading/writing the model from/to the globally shared KV-
store when we transform from one stage to another (shown as Steps 3 and 4 in Figure 4(a)),
FlexPS provides a Direct Model Transfer feature to avoid these two processes. By Direct
Model Transfer, the system can send the model to the node in which that the next stage will
run and thus bypasses the KV-store (i.e., Step 3 in Figure 4(b)). Since a task does not know
its execution position at the next stage (the decision is made by the TaskScheduler), the
model will be kept in the current worker thread until the next stage of this task is scheduled.
When the next stage is executed, the previous worker thread will be informed and send the
model to the next worker.

5. Task Parallelism & Resource Sharing

We design a centralized task scheduler as well as different scheduling strategies to enable
task parallelism control in our system, which facilitates the multi-stage design by scheduling
tasks with the desired parallelism according to task locality, task preference, task scheduling
history, and cluster utilization.

In FlexPS, all running tasks can share the same loaded data, so that the training data
do not need to be loaded each time for each task. This is useful since it is common to use
different machine learning strategies (e.g., different models, different algorithms, or different
learning rates) to extract information from the same dataset. Multiple tasks are also sharing
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when we move from one stage to another (shown as Steps
3 and 4 in Figure 3a), PowerPS provides the DMT option
to bypass the loading and dumping between stages. With
DMT, the system directly sends the model to the machine
that will be scheduled for the next stage and thus bypasses
the KV-store (i.e., Step 3 in Figure 3b). Since a task may not
know where it will be run at the next stage (as TaskScheduler
makes the decision), the model will be temporarily kept in
the current slave until the next stage of this task is scheduled.
When the next stage is scheduled, the DMT module in this
slave will be notified and send the model to the next slave.
Our tests show that DMT can boost the performance of
changing stages by 23%.

5.3 On-Demand Model
If the model is very large or there is certain constraint on
available memory, users may choose to use the on-demand
model, which loads only relevant chunks of the model when
needed. In the on-demand model, a chunk is the smallest unit
when communicating with the global KV-store. The benefits
are the following: (1) a chunk can be loaded lazily only when
users need it, making the Seq/SPMT computational frame-
works scalable to process big models since only parts of the
model are needed each time; (2) chunk-based communica-
tion with the KV-store can better utilize the bandwidth and
improve computational efficiency since it uses fewer keys
and loads parameters that are clustered together.

Frequent parameter pool. The on-demand model works
well in most cases. However, in some extreme cases, e.g.,
many chunks are loaded but only a small fraction of param-
eters in each chunk are really needed, the benefits brought
by the on-demand model will be canceled out. To avoid such
cases, we design a frequent parameter pool to pre-load the
frequently used parameters. Each access/update to the pre-
loaded parameters happens in the pool and does not trigger
pulling the corresponding chunks from the global KV-store.
A chunk will be pulled only when the parameters needed are
not found in the pool and the chunk is not cached yet. We
also let parameters in the pool share the same locks with its
corresponding chunks to avoid locking the whole pool when
threads access it concurrently.

Chunk replacement policies. In some cases when we
need to load many chunks but memory is limited, the system
provides different chunk replacement policies to swap some
chunks to disks, which is similar to the standard cache re-

placement policies. When accessing the parameters, Chunk
Cache Manager checks whether the requested chunks are
in memory, local disk or global KV-store. Chunk Cache
Manager also checks whether the number of cached chunks
in memory exceed a pre-defined threshold and if it is the
case, a portion of chunks (defined by a dump factor) will
be swapped to local disks according to different chunk re-
placement policies. Random, Least Recently Used (LRU)
and Least Frequently Used (LFU) strategies are provided.

5.4 Interaction with KV-Store
The KV-workers and KV-servers are actors, which keep
polling events and invoke callbacks. They communicate with
each other through an underlying communication module,
Mailbox, which mainly consists of a send thread and a re-
ceive thread. When messages are received, Mailbox notifies
the corresponding blocked KV-worker or KV-server actors,
and the actors invoke the callbacks. The KV-workers talk to
the KV-servers through request/response.

The local KV-workers and KV-servers are organized in
the same local process, so that we can optimize the push/pull
issued to the local KV-servers by employing zero-copy func-
tionality, meaning that the pushed or pulled data need not
be serialized and de-serialized. Our test shows that the local
zero-copy boosts the local pull/push performance by 3 times.

The synchronization between KV-workers and KV-servers
can significantly affect the system performance. We make
the consistency controller decentralized and reside inside
each KV-server instead of a centralized consistency con-
troller. The objective is to avoid unnecessary communication
with the centralized consistency controller so the clock mes-
sages can be sent directly to KV-servers together with other
messages. Consistency controllers in all KV-servers work
independently but are guaranteed to have the same outcome.

5.5 Repeated Pull Avoidance
In Distributed PS, multiple worker threads in one process
may require the same key/value pairs from KV-servers. The
extra pull cost can be saved by sharing the pulled key/value
pairs within a process. We implement process cache together
with a simple strategy to avoid these repeated requests.

Under SSP, each Get or GetChunks request should be
returned only if the current versions of the key/value pairs
in the process cache are not older than the current worker
progress by a user-defined staleness threshold. In the process
cache, each chunk is associated with a linked-list to maintain
the requests for it, ordered by versions. When a newer chunk
is in need, a worker thread will check the version of the
chunk and update the linked-list as well as fetch the chunk if
the version is not new enough. The linked-lists are protected
by locks to prevent duplicated fetch operations.

5.6 Model Partitioning and Worker Interaction
Besides the traditional way to partition the keys using con-
sistent hashing, PowerPS also supports user-customized par-
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that will be scheduled for the next stage and thus bypasses
the KV-store (i.e., Step 3 in Figure 3b). Since a task may not
know where it will be run at the next stage (as TaskScheduler
makes the decision), the model will be temporarily kept in
the current slave until the next stage of this task is scheduled.
When the next stage is scheduled, the DMT module in this
slave will be notified and send the model to the next slave.
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The local KV-workers and KV-servers are organized in
the same local process, so that we can optimize the push/pull
issued to the local KV-servers by employing zero-copy func-
tionality, meaning that the pushed or pulled data need not
be serialized and de-serialized. Our test shows that the local
zero-copy boosts the local pull/push performance by 3 times.

The synchronization between KV-workers and KV-servers
can significantly affect the system performance. We make
the consistency controller decentralized and reside inside
each KV-server instead of a centralized consistency con-
troller. The objective is to avoid unnecessary communication
with the centralized consistency controller so the clock mes-
sages can be sent directly to KV-servers together with other
messages. Consistency controllers in all KV-servers work
independently but are guaranteed to have the same outcome.

5.5 Repeated Pull Avoidance
In Distributed PS, multiple worker threads in one process
may require the same key/value pairs from KV-servers. The
extra pull cost can be saved by sharing the pulled key/value
pairs within a process. We implement process cache together
with a simple strategy to avoid these repeated requests.

Under SSP, each Get or GetChunks request should be
returned only if the current versions of the key/value pairs
in the process cache are not older than the current worker
progress by a user-defined staleness threshold. In the process
cache, each chunk is associated with a linked-list to maintain
the requests for it, ordered by versions. When a newer chunk
is in need, a worker thread will check the version of the
chunk and update the linked-list as well as fetch the chunk if
the version is not new enough. The linked-lists are protected
by locks to prevent duplicated fetch operations.

5.6 Model Partitioning and Worker Interaction
Besides the traditional way to partition the keys using con-
sistent hashing, PowerPS also supports user-customized par-
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the same key/value-store module, and thus a testing task submitted after all the training
tasks can retrieve the models of the training tasks. This could be useful for ensemble
learning.

6. Local Consistency Control

To make the Seq and SPMT computational frameworks efcient on the PS architecture,
we should reduce the network communications between the workers and servers as much as
possible.

One of the important optimizations in FlexPS specically designed for Seq and SPMT
is the local consistency control. We implement a local model store beside the global model
stored in the KV-store. The local model store in FlexPS is different from the process-level
cache in other PS-based systems in that it allows us to move the consistency controller from
the server side to the local process, which signicantly reduces the synchronization cost over
the network. All updates of the model and the consistency controls are performed inside
the local worker process in order to avoid network communication with the globally shared
KV-store.

6.1. Local model store

The local model accessing guidelines are as follows: (1) the working thread checks with
the consistency controller whether it can access the model, if not, it will be blocked; (2) if the
consistency requirement is met, this thread is granted to access the model; (3) after accessing
the model, the consistency controller is informed and notifies all the blocked threads.

The local consistency controller maintains the progress of each worker and the min
progress for stale synchronous parallel (SSP), where the min progress records the progress
of the slowest worker. Multiple threads access and update the worker progress and min
progress in the critical section. A worker thread will be blocked if it is faster than the min
progress by a threshold specified by SSP. When the min progress is updated, threads blocked
w.r.t. the old min progress will be notified.
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6.2. Concurrency control

Since various threads may access the shared local model at the same time, concurrency
control is implemented on the local model. We sort out the local model in chunks and
attach a mutex to each chunk. It is a tradeoff between having a mutex for every single
parameter (best concurrency control for accessing the model but not practical due to a
large number of parameters) and having a lock for the whole local model. Besides, the
chunk-based configuration also provides constant indexing time to a particular parameter
(reading/writing a parameter, and checking whether a chunk is loaded). Experiments show
that the locking process takes only 1-2% of the total time. This is because contention for
the same mutex is not severe since we divide the model into chunks, and each read or write
to the chunks is fast.

7. Repeated Pull Avoidance

In Distributed PS, multiple worker threads in one process may require the same key/value
pairs from KV-servers. The extra pull cost can be saved by sharing the pulled key/value
pairs within a process.We implement process cache together with a simple strategy to avoid
these repeated requests.

Under SSP, each Get or GetChunks request should be returned only if the current versions
of the key/value pairs in the process cache meets the user-defined staleness threshold. In
the process cache module, we attach a linked-list to each chunk to keep the requests for it,
ordered by versions. When a newer chunk is in need, the worker will check the version of
the chunk and update the linked-list (fetch the chunk from global KV-store if the chunk’s
version does not meet the staleness threshold). The linked-lists are protected by mutexes to
prevent duplicated fetch operations.

8. SparseSSP

Stale Synchronous Parallel (SSP)[2] is a relaxed version of the Bulk Synchronous Parallel
model. It reduces the workers’ waiting time for pulling parameter from the global KV-store
by allowing distributed workers to read older, stale version of the parameter from a local
process cache. SSP is part of the Petuum[3] system.

However, SSP fails to exploit the parameter accessing pattern when the add/get oper-
ations are sparse. We propose a new communication model specially optimized for dealing
with sparse datasets, called SparseSSP. SparseSSP extends SSP by making use of the sparse
access/update pattern of each worker. It has the following two features: First, it keeps
the semantics of the SSP model, meaning that it shares the same theoretical correctness as
SSP. Second, it allows fast workers to be more than s steps ahead of the slowest workers
if there are no parameter access conflicts. These features make workers under SparseSSP
spend even less time on waiting for remote parameter accessing compared with SSP when
dealing with the sparse workload in the heterogeneous environment while preserving the
similar convergence guarantees with SSP.

9



Stale Synchronous Parallel 

22 

Note: x-axis is now iteration count, not time! 
 

Allow threads to usually run at own pace 
Fastest/slowest threads not allowed to drift >S iterations apart 

Threads cache local (stale) versions of the parameters, to reduce network syncing 

Iteration 0 1 2 3 4 5 6 7 8 9 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Staleness Threshold 3 
Thread 1 waits until 
Thread 2 has reached iter 4 
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Figure 6: Bounded Speculation under the SparseSSP Model

8.1. Algorithm Analysis

SSP The PS systems that support SSP model use an integer-valued clock to keep track
with the current iteration of each worker. For each machine learning task, the user can
define a parameter called staleness. SSP allows different workers working on different itera-
tions simultaneously, but the slowest and fastest workers must be ≤ staleness clocks apart.
Otherwise, the fastest worker will be blocked until the slowest worker finished its current
iteration. (see Figure 5 for a graphical illustration):

In Petuum’s implementation, each worker thread caches local (stale) versions of the
parameters, to achieve the within-staleness iterations parameter accessing to reduce network
syncing.

SparseSSP We notice that even the fastest worker is faster than others by several iterations,
but the parameters that it needs to access in the next iteration are normally not used by
other workers in the case of the sparse dataset. In this situation, it’s safe to let the fastest
worker move on to next iteration since the parameters it gets from the server is still the
updated (because no other workers would update these parameters in current iteration).

We introduces a new term called speculation in SparseSSP model. On the base of SSP,
when the clock (current iteration) difference between the slowest and fastest workers reaches
staleness, we check the parameters that these two workers are manipulating. If the param-
eters that there are using have no intersections, then we let the fastest worker move on for
at most speculation iterations to further reduce the worker’s waiting time.
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The graphical illustration is shown in Figure 6 and the pseudo-algorithm of SparseSSP
is as below:

Algorithm 1 SparseSSP Algorithm to check if worker i can move on to next iteration

Require: wi: worker i ci: the clock value wi s: staleness sp: speculation Pi: the set of
parameter that wi is manipulating

1: initialize flag = True
2: for every worker wj from all worker where i 6= j do
3: if ci − cj ≤ s then
4: continue;
5: else if s < ci − cj <= s + sp then
6: if Pi ∩ Pj = ∅ then
7: continue;
8: end if
9: end if

10: flag = False;
11: break;
12: end for
13: if flag = True then
14: wi can move on
15: else
16: wi waits until the slowest worker finish its current iteration
17: end if

Probability of conflicts Next, we show that in the sparse dataset, the probability of
parameter conflict between the fastest and slowest worker is lower enough for the fastest
worker to move on in most cases.

Consider the case of Stochastic gradient descent (SGD) algorithm. Suppose each record of
a sparse dataset has n parameters, the number of parameter (non-zero parameter) that each
worker needs for a iteration’s training is m, and the set of parameters that the fastest/slowest
worker manipulating is Pfast/Pslow Probability that Pfast and Pslow have no intersection:

P (no conflict) =

(
n−m
m

)(
n
m

)
Thus, the probability that the fastest and slowest workers have conflicts is:

P (conflict) = 1−
(
n−m
m

)(
n
m

)
Here are some information frequent-used sparse datasets in machine learning and their

corresponding probability of conflicts (where Sparsity is the ratio between the average num-
ber of non-zero features and the number of features of the dataset):
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Table 1: Sparse datasets

Dataset kdd12[11] avazu[12] criteo[13] url[? ]
# of features 5.5x107 106 106 3.2x106

# of samples 1.5x108 4.0x107 4.6x107 2.4x106

Sparsity 2.0x10−7 1.5x10−5 3.9x10−5 3.1x10−5

Pr of conflicts 2.2x10−6 2.2x10−4 1.5x10−3 3.0x10−3

As shown in the Table 1, in these frequent-used sparse datasets in machine learning, the
probability that two workers are accessing the same parameter in quite small. It means that
the fastest worker in the SparseSSP model can cross the staleness + speculation bounder in
most cases. This gives us evidence that the SparseSSP model can greatly reduce the worker
waiting time and increase the task execution efficiency in the case of sparse datasets.

9. Evaluation

We evaluated the efficiency of the multi-stage design as well as the SparseSSP algorithm
of FlexPS on our CSE Department’s cluster. The cluster contains 20 nodes, each with two
2.0GHz E5-2620 Intel(R) Xeon(R) CPU, 48GB RAM, a 450GB SATA disk (6Gb/s, 10k
rpm, 64MB cache), connected via 1 Gbps Ethernet.

9.1. Multi-stage Abstraction

We mainly use two datasets, mnist8m[14] and svhn, to evaluate the performance of the
Multi-stage Abstraction.

Multi-stage Abstraction We first demonstrate the flexibility of parallelism brought
by FlexPS to adjust the parallelism degree across different stages of computation, and how
it can speed up convergence and save computing resources. We used a mini-batch gradient
descent algorithm to test the k -means task under three kinds of configurations of FlexPS:
one-stage (160 workers for mnist8m and 80 workers for svhn), three-stage with constant
parallelism (using 160 workers consistently in all stages for mnist8m and 80 workers for
svhn), and three-stage with workload-adaptive parallelism (the number of workers changes
according to the workload in each stage, where the numbers for the three stages are 20, 80,
and 160 workers for mnist8m, and 20, 40, and 80 workers for svhn). The one-stage tasks
train with mini-batch sizes of 8,100 for mnist8m and 700 for svhn. The three-stage tasks
train with mini-batch sizes of 810, 8,100 and 81,000 for the three stages for webspam, and
70, 700 and 7,000 for svhn.

12



FlexPS: A flexible and scalable Parameter Server for Distributed ML

one-stage 3 stages const threads 3 stages variable threads

150

200

250

300
285.1

216.5

135.7

tim
e
(s
)

Figure 6: Resource utilization of FlexPS (mnist8m)

Table 1: Sparse datasets

Dataset kdd12[6] avazu[7] criteo[8] url[11]
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As shown in the Table 1, in these frequent-used sparse datasets
in machine learning, the probability that two workers are accessing
the same parameter in quite small. It means that the fastest worker
in the SparseSSPmodel can cross the staleness + speculation bounder
in most cases. This gives us evidence that the SparseSSP model
can greatly reduce the worker waiting time and increase the task
execution efficiency in the case of sparse datasets.

6 EVALUATION
We evaluated the performance of the multi-stage abstraction as
well as the SparseSSP of FlexPS on our CSE Department’s cluster.
The cluster contains 20 machines, each equipped with two 2.0GHz
E5-2620 Intel(R) Xeon(R) CPU, 48GB RAM, a 450GB SATA disk
(6Gb/s, 10k rpm, 64MB cache), connected via 1 Gbps Ethernet.

6.1 Multi-stage Abstraction
Wemainly use two datasets, mnist8m[10] and svhn[14], to evaluate
the performance of the Multi-stage Abstraction.

Multi-stage Abstraction We first demonstrate the flexibility
of parallelism brought by FlexPS to adjust the parallelism degree
across different stages of computation, and how it can speed up con-
vergence and save computing resources. We used a mini-batch gra-
dient descent algorithm to test the k-means task under three kinds
of configurations of FlexPS: one-stage (160 workers for mnist8m
and 80 workers for svhn), three-stage with constant parallelism
(using 160 workers consistently in all stages for mnist8m and 80
workers for svhn), and three-stage with workload-adaptive paral-
lelism (the number of workers changes according to the workload
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in each stage, where the numbers for the three stages are 20, 80, and
160 workers for mnist8m, and 20, 40, and 80 workers for svhn). The
one-stage tasks train with mini-batch sizes of 8,100 for mnist8m
and 700 for svhn. The three-stage tasks train with mini-batch sizes
of 810, 8,100 and 81,000 for the three stages for webspam, and 70,
700 and 7,000 for svhn.

Figures 6, 7 show that the total execution time used by all worker
threads with multi-stage parallelism use only half of the times of
the traditional PS that uses constant computation resources in one
stage for both mnist8m and svhn.

Comparison with other PS systems In this experiment, we
compared FlexPS with Petuum and Multiverso on a mini-batch
gradient descent k-means task with dynamic workloads. We de-
noted the one-stage FlexPS in above experiment by FlexPS-, in the
comparison. Similar to Petuum and Multiverso, FlexPS- only adopts
a single stage and a constant parallelism degree for a task. The num-
ber of workers used in is 160 in FlexPS-, Petuum and Multiverso
for mnist8m, and 80 in FlexPS-, Petuum and Multiverso for svhn.
The number of workers used in the multi-stage FlexPS is the same
as the above experiment.

Figures 8, 9 show that the execution times for FlexPS are nearly
half of the times used by Petuum and Multiverso for both mnist8m
and svhn datasets. Even when disabling the ïňĆexible parallelism
control, FlexPS- still use less time than these two systems. This
demonstrates the advantage of the flexibility of parallelism control
of FlexPS over the existing systems.

6.2 SparseSSP
As we want to explore the performance of SparseSSP in a heteroge-
neous cluster environment and verify its effectiveness to cope with
the straggler problem, we fictitiously inject some slow machines
in the cluster using the methods in [3] and compare the execution
time of SparseSSP with BSP, ASP, SSP.

We list some of the parameters that we used in the experiments
it Table 3, 2:

(a) mnist8m
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in machine learning, the probability that two workers are accessing
the same parameter in quite small. It means that the fastest worker
in the SparseSSPmodel can cross the staleness + speculation bounder
in most cases. This gives us evidence that the SparseSSP model
can greatly reduce the worker waiting time and increase the task
execution efficiency in the case of sparse datasets.

6 EVALUATION
We evaluated the performance of the multi-stage abstraction as
well as the SparseSSP of FlexPS on our CSE Department’s cluster.
The cluster contains 20 machines, each equipped with two 2.0GHz
E5-2620 Intel(R) Xeon(R) CPU, 48GB RAM, a 450GB SATA disk
(6Gb/s, 10k rpm, 64MB cache), connected via 1 Gbps Ethernet.

6.1 Multi-stage Abstraction
Wemainly use two datasets, mnist8m[10] and svhn[14], to evaluate
the performance of the Multi-stage Abstraction.

Multi-stage Abstraction We first demonstrate the flexibility
of parallelism brought by FlexPS to adjust the parallelism degree
across different stages of computation, and how it can speed up con-
vergence and save computing resources. We used a mini-batch gra-
dient descent algorithm to test the k-means task under three kinds
of configurations of FlexPS: one-stage (160 workers for mnist8m
and 80 workers for svhn), three-stage with constant parallelism
(using 160 workers consistently in all stages for mnist8m and 80
workers for svhn), and three-stage with workload-adaptive paral-
lelism (the number of workers changes according to the workload
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in each stage, where the numbers for the three stages are 20, 80, and
160 workers for mnist8m, and 20, 40, and 80 workers for svhn). The
one-stage tasks train with mini-batch sizes of 8,100 for mnist8m
and 700 for svhn. The three-stage tasks train with mini-batch sizes
of 810, 8,100 and 81,000 for the three stages for webspam, and 70,
700 and 7,000 for svhn.

Figures 6, 7 show that the total execution time used by all worker
threads with multi-stage parallelism use only half of the times of
the traditional PS that uses constant computation resources in one
stage for both mnist8m and svhn.

Comparison with other PS systems In this experiment, we
compared FlexPS with Petuum and Multiverso on a mini-batch
gradient descent k-means task with dynamic workloads. We de-
noted the one-stage FlexPS in above experiment by FlexPS-, in the
comparison. Similar to Petuum and Multiverso, FlexPS- only adopts
a single stage and a constant parallelism degree for a task. The num-
ber of workers used in is 160 in FlexPS-, Petuum and Multiverso
for mnist8m, and 80 in FlexPS-, Petuum and Multiverso for svhn.
The number of workers used in the multi-stage FlexPS is the same
as the above experiment.

Figures 8, 9 show that the execution times for FlexPS are nearly
half of the times used by Petuum and Multiverso for both mnist8m
and svhn datasets. Even when disabling the ïňĆexible parallelism
control, FlexPS- still use less time than these two systems. This
demonstrates the advantage of the flexibility of parallelism control
of FlexPS over the existing systems.

6.2 SparseSSP
As we want to explore the performance of SparseSSP in a heteroge-
neous cluster environment and verify its effectiveness to cope with
the straggler problem, we fictitiously inject some slow machines
in the cluster using the methods in [3] and compare the execution
time of SparseSSP with BSP, ASP, SSP.

We list some of the parameters that we used in the experiments
it Table 3, 2:
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Figure 7: Resource utilizaion of FlexPS

Figures 7(a), 7(b) show that the total execution time used by all worker threads with
multi-stage parallelism use only half of the times of the traditional PS that uses constant
computation resources in one stage for both mnist8m and svhn.

Comparison with other PS systems In this experiment, we compared FlexPS with
Petuum and Multiverso on a mini-batch gradient descent k -means task with dynamic work-
loads. We denoted the one-stage FlexPS in above experiment by FlexPS-, in the comparison.
FlexPS- simulates the way that Petuum and Multiverso do, adopting a single stage and a
constant parallelism degree for a task. The number of workers used in is 160 in FlexPS-,
Petuum, and Multiverso for mnist8m, and 80 in FlexPS-, Petuum, and Multiverso for svhn.
The number of workers used in the multi-stage FlexPS is the same as the above experiment.
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Table 2: Experiment parameter

# of non-zero 10 100 1000 10000
Sparsity 10−6 10−5 10−4 110−3
Pr of conflicts 10−5 10−4 9.5x10−2 0.9955

Table 3: Experiment setup

workers per node 10
servers per node 1
number of iterations 1000
number of dimentions 10000000

Figure 10 shows the comparison results of the execution times of
different parallelism protocols in sparse data. From both Table 2 and
Figure 10, we can see that when the sparsity is low (10−6 − 10−4),
the SparseSSP model can effectively reduce the total execution time
of the worker. When the sparsity is extremely low (< 10−6), the
time that workers used to finish the same task is nearly the same
as the optimal time (The time of the SSP model where staleness
= 5 is the optimal time for our SparseSSP model, since it allows
the fastest worker to surpass the slowest worker for 5 iterations
without any condition).

However, when the sparsity is high (> 10−4), we can know
from Table 2 that the probability of parameter conflicts between
two workers is high (nearly 1 when sparsity is 10−3). Thus it’s
nearly impossible for the SparseSSP model to let the fastest worker
move on to next iteration if it’s highly likely to have parameter
conflicts with other workers. We even waste some time to check
for parameter conflicts and resulting in the higher execution time
than the SSP model when the sparsity is high as shown in Figure 10.
This experiment’s results show that the SparseSSP model performs
very well in the highly sparse datasets, but may not be that useful
in those datasets with higher sparsity.

FlexPS FlexPS- Petuum Multiverso

300

350

400

450

500

286.2

381.3

487.9

514.5

tim
e
(s
)

Figure 9: Comparison (svhn)

−6 −5.5 −5 −4.5 −4 −3.5 −3
0

20

40

60

sparsity (10−x )

tim
e
(m

s)

ASP
SSP s=0
SSP s=5

SparseSSP s=0 sp=5

Figure 10: Comparison of different parallelism protocol in
sparse data

7 CONCLUSION
We proposed FlexPS, which is a distributed machine learning sys-
tem that provides a flexible and general design of the traditional PS
architecture. A number of new system designs and optimizations
designs such as the multi-stage abstraction and SparseSSP paral-
lelism protocol, enable FlexPS to provide a unified framework and
a more efficient implementation for distributed parameter server,
thus supporting a wide range of machine learning applications. We
demonstrated that each of the designs and optimizations in FlexPS
brings effective performance improvements in different aspects,
allowing FlexPS to address the limitations of other existing param-
eter server systems on both the flexibility of parallelism control
and the performance when dealing with straggler problems when
training on highly sparse datasets.

(a) mnist8m
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This experiment’s results show that the SparseSSP model performs
very well in the highly sparse datasets, but may not be that useful
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We proposed FlexPS, which is a distributed machine learning sys-
tem that provides a flexible and general design of the traditional PS
architecture. A number of new system designs and optimizations
designs such as the multi-stage abstraction and SparseSSP paral-
lelism protocol, enable FlexPS to provide a unified framework and
a more efficient implementation for distributed parameter server,
thus supporting a wide range of machine learning applications. We
demonstrated that each of the designs and optimizations in FlexPS
brings effective performance improvements in different aspects,
allowing FlexPS to address the limitations of other existing param-
eter server systems on both the flexibility of parallelism control
and the performance when dealing with straggler problems when
training on highly sparse datasets.
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Figure 8: Comparison

Figures 8(a), 8(b) show that the execution times for FlexPS are nearly half of the times
used by Petuum and Multiverso for both mnist8m and svhn datasets. Even when disabling
the exible parallelism control, FlexPS- still use less time than these two systems. This
demonstrates the advantage of the flexibility of parallelism control of FlexPS over the existing
systems.
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Table 2: Experiment setup

workers per node 10
servers per node 1
number of iterations 1000
number of dimentions 10000000

Table 3: Experiment parameter

# of non-zero 10 100 1000 10000
Sparsity 10−6 10−5 10−4 110−3

Pr of conflicts 10−5 10−4 9.5x10−2 0.9955

9.2. SparseSSP

As we want to explore the performance of SparseSSP in a heterogeneous cluster environ-
ment and verify its effectiveness to cope with the straggler problem, we fictitiously inject
some slow machines in the cluster using the methods in [15] and compare the execution time
of SparseSSP with BSP, ASP, SSP.

We list some of the parameters that we used in the experiments it Table 2, 3:
Figure 9 shows the comparison results of the execution times of different parallelism

protocols in sparse data. From both Table 3 and Figure 9, we can see that when the
sparsity is low (10−6−10−4), the SparseSSP model can effectively reduce the total execution
time of the worker. When the sparsity is extremely low (< 10−6), the time that workers
used to finish the same task is nearly the same as the optimal time (The time of the SSP
model where staleness = 5 is the optimal time for our SparseSSP model, since it allows the
fastest worker to surpass the slowest worker for 5 iterations without any condition).
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the fastest worker to surpass the slowest worker for 5 iterations
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two workers is high (nearly 1 when sparsity is 10−3). Thus it’s
nearly impossible for the SparseSSP model to let the fastest worker
move on to next iteration if it’s highly likely to have parameter
conflicts with other workers. We even waste some time to check
for parameter conflicts and resulting in the higher execution time
than the SSP model when the sparsity is high as shown in Figure 10.
This experiment’s results show that the SparseSSP model performs
very well in the highly sparse datasets, but may not be that useful
in those datasets with higher sparsity.
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7 CONCLUSION
We proposed FlexPS, which is a distributed machine learning sys-
tem that provides a flexible and general design of the traditional PS
architecture. A number of new system designs and optimizations
designs such as the multi-stage abstraction and SparseSSP paral-
lelism protocol, enable FlexPS to provide a unified framework and
a more efficient implementation for distributed parameter server,
thus supporting a wide range of machine learning applications. We
demonstrated that each of the designs and optimizations in FlexPS
brings effective performance improvements in different aspects,
allowing FlexPS to address the limitations of other existing param-
eter server systems on both the flexibility of parallelism control
and the performance when dealing with straggler problems when
training on highly sparse datasets.

Figure 9: Comparison of different parallelism protocol in sparse data
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However, when the sparsity is high (> 10−4), we can know from Table 3 that the prob-
ability of parameter conflicts between two workers is high (nearly 1 when sparsity is 10−3).
Thus it’s nearly impossible for the SparseSSP model to let the fastest worker move on to
next iteration if it’s highly likely to have parameter conflicts with other workers. We even
waste some time to check for parameter conflicts and resulting in the higher execution time
than the SSP model when the sparsity is high as shown in Figure 9. This experiment’s
results show that the SparseSSP model performs very well in the highly sparse datasets, but
may not be that useful in those datasets with higher sparsity.

10. Conclusion

We proposed FlexPS, which is a distributed machine learning system that provides a
flexible and general design of the traditional PS architecture. Several new system designs
and optimizations designs such as the multi-stage abstraction, task parallelism, as well as
SparseSSP parallelism protocol, enable FlexPS to provide a unified framework and a more
efficient implementation for distributed parameter server, thus supporting a wide range of
machine learning applications. We demonstrated that each of the designs and optimizations
in FlexPS brings effective performance improvements in different aspects, allowing FlexPS
to address the limitations of other existing parameter server systems on both the flexibility of
parallelism control and the performance when dealing with straggler problems when training
on highly sparse datasets.
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