
FlexPS: A flexible and scalable
Parameter Server for Distributed ML

ESTR4999 Graduation Thesis II
Name: Zhanhao Liu

Supervisor: Prof. James Cheng

https://github.com/Yuzhen11/flexps

1

https://github.com/Yuzhen11/flexps

4 Needs for ML & AI Tech
Resource Efficient: Use less CPU, GPU, memory, networks ...

Scalable: Linear performance increase with more computation resource

Correct: Can we trust the result?

General ML/AI Platform: Deep learning is only 10%

Efficient & correct Correct & general
Efficient, Scalable,
Correct & General?

2

Big Data

1B+ Users
30+ Petabytes

100h+ video uploaded
every minute

645 millions users
500 millions tweets / day

32M+ pages

3

Big Model
Large Model is better for Big Data

Google Brain deep learning for images:

1 ~ 10 billion model parameters

Netflix collaborative filtering for video recommendation:

1 ~ 10 billion model parameters

Topic Models for text analysis:

Up to 1 Trillion model parameters

4

Iterative Convergent Algorithm
Data: D

Model L (ie. a fitness function such as likelihood)

Algorithm: update the model’s parameters A iteratively until it converges

Algorithms: Stochastic Gradient Descent (SGD), Stochastic Average Gradient (SAG),
stochastic variance reduced gradient (SVRG).

Models: Logistic Regression, Support Vector Machine, Kmeans, Neural Network

Stochastic Gradient Descendent (SGD) is usually used to solve logistic regression

5

Parameter Server

separate the working units into workers
and servers

- Parallel workers update models stored
distributedly in servers

- Easy-to-use key/value store interface

6

FlexPS: Architecture

7

FlexPS is organized in a master/slave architecture

● Master
○ TaskScheduler
○ FileAssigner

● Slave
○ KVStore
○ DataStore
○ AsynReader
○ Tasks

Architecture: TaskScheduler

TaskScheduler decides which task to run & where it runs.

3 scheduling algorithms:

- Sequential scheduling
- Greedy scheduling
- Prioritized scheduling

8

Optimal scheduling algorithm?

Multiple Knapsack Problem → NP Hard

Evaluation: Task Scheduling

9

- 6 tasks with different workloads, 300 threads

- Greedy and Prioritized significantly outperform the Sequential due

to task parallelism

- Prioritized: prevent starvation & high throughput

Evaluation: Task Scheduling

10

- 6 tasks with different workloads, 300 threads

- Resource → # of threads

- Both algorithms achieve high resource utilization at most time

- Prioritized scheduling eliminates starvation (Task 6)

Architecture: KV-Store

Programming Model:

Get(keys)

Add(keys, vals)

GetChunk(keys)

AddChunk(keys, vals)

11

Key Design: Multi-stage ML
Breaks down a machine learning task into different stages

A stage runs a sub-task on a specific set of computing resources
characterized by the number of slaves and the location of these
slaves

Traditional PS (one stage) FlexPS (multi-stage) 12

Optimization: Direct Model Transfer
Normal Procedure:

1. Load the model from KV-Store
2. Perform training locally
3. Dump the model to KV-Store
4. Repeat above steps in subsequent stages

Direct Model Transfer:

• Bypass KV-Store
• Boost the performance of changing stages by 23%

13

Evaluation: LR Performance on SVRG

14

- Total worker time: the total amount of (worker × time) in all stages

(reflect total CPU hours)

- 3.5x on elapsed time, 8x on worker time

Background: Consistency models

Ho, Q. (NIPS 2013). More E ective Distributed ML via a
Stale Synchronous Parallel Parameter Server.

15

Key Design: Local Consistency Control

16

Server 1

Consistency Controller

Worker 1
Updates/Accesses
via networks

Local Model Store

Server 1

Worker 1

Local Consistency
Controller

Avoid Communication
if possible

Consistency Controller

Local Model Store

Pop up consistency controller from server side

Key Design: Local Consistency Control
Model access procedure:

1. working thread checks with the local consistency controller

2. If the consistency requirement is satisfied, this thread

is granted to access the model

3. When slowest thread finish, update min_progress

& notify blocked threads

All updates & consistency controls are performed locally!
17

1
23

Local Consistency
Controller

Local Model Store

✓
✗

…

Key Design: Local Consistency Control

Concurrency control:

- Multiple threads may access the shared local model simultaneously

- Sort & divide the local model into chunks

- Attach a lock (mutex) to each chunk

- Tradeoff: Lock every single parameter vs Lock a chunk

- Experiments: Less contention, fast model access (1-2% of total time)

18

FlexPS: Optimizations
Load Balancing:

A global FileAssigner to keep the block information of all files in HDFS

Assigns blocks to the worker threads according to data locality

Data loading on-the-fly：

AsyncReader module with the classical producer-consumer paradigm

reader threads load the data from HDFS and store them to a pre-allocated buffer

worker threads consume the data in the buffer and use the data to train the
model

19

Comparison: LR with SVRG
FlexPS-Opt: offline search for optimal stage config

FlexPS-Auto: runtime search for stage config

FlexPS-: disable the flexible parallelism control of FlexPS

Dataset: webspam, kdd

Batch size of the stochastic step:

0.1% for webspam and 0.001% for kdd

Number of training epochs: 10

2-5 times speedup in task completion time!

(a) webspam

(b) kddhttp://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
www.kddcup2012.org/c/kddcup2012-track2/data

20

Comparison: Convergence speed on LDA

21

Conclusion
We proposed FlexPS, which provides a more flexible and scalable PS
framework for distributed ML with innovative designs:

● TaskScheduler: flexible task scheduling (sequential, greedy, prioritized)

● Multi-stage design: make the most of the computing resources

○ Direct model transfer: Bypass the KV-Store

● Local consistency control: Avoid network traffic

○ Concurrency control: Lock single parameter vs Lock a chunk

● Load Balancing: exploit the data locality

● Data load on-the-fly: asynchronous data loading

● ...
22

Q&A
23

Example: Logistic Regression

y = w.X + b

y: Discrete class [0, 1] prediction

X: data set (a matrix)

Cost: Correct/Wrong prediction from actual

Goal: Find scalars w, b

Iterative Convergent Algorithm, often solved by SGD

Stochastic Gradient Descendent(SGD) is usually used to solve logistic regression

24

Example: Stochastic Variance Reduced Gradient

25

Example: Multi-stage LR with SVRG
/* Step 1: define the stages */
auto fgd_lambda = [](Info info) {
// Get model parameter w from the KV-store
// Calculate gradient
// Update full gradient u in the KV-store
};
auto sgd_lambda = [](Info info) {
// Get w and u from the KV-store
// Calculate gradient
// Perform variance-reduced update
// Update w to the KV-store
};
/* Step 2: set the parallelism degree */
MultiStageTask task;
task.SetStages({{fgd_lambda, 100},{sgd_lambda, 10}});
/* Step 3: submit the task */
engine.SubmitAndWait(task);

26

Machine Learning Systems
Iterative MapReduce Data Flow Graph Parameter Server

Model

27

Why Parameter Server?

Support for big model

The driver can’t hold big model due to limited memory size

Flexible Consistency Control
Allows asynchronous operation

Spark and Hadoop are Bulk Synchronous Parallel

Better network utilization, and lets you scale your models

28

Existing PS Systems
ps-lite:

Underlying communication module of MXNet

Flexible consistency models, Fault Tolerance

Petuum:
Developed by SAILING Lab from CMU, now a start-up company

Flexible consistency models (SSP), Model parallelism

Multiverso:
Core module of the Microsoft Distributed Machine Learning Toolkit (DMTK)

Abstract Communication APIs, Supports for deep learning systems (torch, theano)

29

Limitations in Existing PS Systems
Flexibility in Parallelism Control
Machine learning algorithms may have varying workloads in different training stages

Stochastic algorithm: smaller mini-batch sizes in earlier stages for fast convergence
and larger mini-batches later to avoid oscillation

variance reduction algorithms: repeats the following two phases until convergence：

1. Compute the full gradient using all data records

2. Update the parameters in a stochastic manner

Existing PS Systems only allow a fixed number of worker threads (i.e., fixed parallelism)
throughout the whole training process

30

Limitations in Existing PS Systems
Optimization for Sparse Data
In most cases of the high dimension dataset, the data is actually sparse (data missing).

Only store the non-zero entries as key-value pairs to save memory.

Special optimization for sparse machine learning problem with high-dimensional
parameters needs to be proposed for lower computational/communication cost.

Existing PS Systems typical support communication models like BSP/SSP/ASP, which
make no difference between sparse and dense data.

31

FlexPS: SparseSSP

32

FlexPS: SparseSSP

Further optimize SSP for sparse data

Allow worker move to next iteration if the set
of parameter that it is manipulating does not
conflict with the slowest worker’s

Max clock difference between workers:

Staleness + Speculation

33

How often will there be conflict？
Total number of parameter of dataset: n

Number of non-zero parameter in each training batch: m

Sparsity: m/n

Probobility of parameter conflict between two workers:

Dataset kdd avazu criteo url

of features 5.5x10^7 10^6 10^6 3.2x10^6

of samples 1.5x10^8 4.0x10^7 4.6x10^7 2.4x10^6

Sparsity 2.0x10^−7 1.5x10^−5 3.9x10^−5 3.1x10^−5

Pr of
conflicts 2.2x10^−6 2.2x10^−4 1.5x10^−3 3.0x10^−3

34

Evaluation: SparseSSP

35

Future Work: Task based PS
Straggler Problem

The slowest worker in a cluster, cripples the scalibility of ditributed ML

Straggler mitigation via tiny tasks:

Task based Parameter Server:

High level & functional: (x;w) => delta

Abstract the threads, user only focus on defining ML task

No need for SSP: tiny tasks --> load balancing

36

Process Cache
Currently, the worker need to
 fetch parameter from the server directly.

A cache could be created in the worker node
 to cache some temporary parameter.

It accelerate getChunk or AddChunk
operations.

37

Load Balancing
Currently, load balancing is done during the loading data task, you could manually
allocate data to different worker nodes.

In the future, load balancing could be done during the execution of task:

1. The worker threads will steal some data from other workers when it is blocked
by consistency control.

2. The fast worker will help slow worker once the fast worker finish its own task.

38

Backup slides

39

